Difference between revisions of "Essay:On cryonics or similar technology"

From RationalWiki
Jump to navigation Jump to search
(→‎For a new life: rejuvenation)
Line 18: Line 18:
  
 
Now, to me, both the above don't seem to be too far into science fiction territory - each unsolved step would seem to be a fairly straightforward, even if difficult, medical problem to solve: how to preserve; how to resurrect/resuscitate (probably the hardest part); and coming up with a cure/solution for a currently untreatable ailment.  The "old patient" part is one step further in my opinion, as mentioned above.
 
Now, to me, both the above don't seem to be too far into science fiction territory - each unsolved step would seem to be a fairly straightforward, even if difficult, medical problem to solve: how to preserve; how to resurrect/resuscitate (probably the hardest part); and coming up with a cure/solution for a currently untreatable ailment.  The "old patient" part is one step further in my opinion, as mentioned above.
 +
 +
:You are correct, rejuvenation is a key element in the cryonics program. Cryonics is based on the idea that future medicine will be able to not only cure all diseases, but cure the disease known as "aging". You say that "we all know the effects of aging", but it seems to me that you do not know very much about aging. Aging is the result of identifiable forms of damage to organs, tissues, cells and macromolecules. To reverse aging requires understanding of those forms of damage and how to either repair or replace what is damaged, which could involve molecular repair, stem cells, artificial organs, etc. For some insight into the molecular basis of aging, see [http://www.benbest.com/lifeext/aging.html Mechanisms of Aging]. For some insight into means of rejuvenation, see [http://en.wikipedia.org/wiki/Strategies_for_Engineered_Negligible_Senescence Strategies for Engineered Negligible Senescence]. Thinking that aging is "magic", beyond human or scientific comprehension is no longer defensible. And with understanding of the process comes the possibility of fixing the damage. --[[User:BenBest|BenBest]] ([[User talk:BenBest|talk]]) 18:14, 26 February 2010 (UTC)
  
 
===Brain only - new body===
 
===Brain only - new body===

Revision as of 18:14, 26 February 2010

Essay.svg This essay is an original work by human.
It does not necessarily reflect the views expressed in RationalWiki's Mission Statement, but we welcome discussion of a broad range of ideas.
Unless otherwise stated, this is original content, released under CC-BY-SA 3.0 or any later version. See RationalWiki:Copyrights.
Feel free to make comments on the talk page, which will probably be far more interesting, and might reflect a broader range of RationalWiki editors' thoughts.

Due to watching the cryonics article being built and keeping up with its talkpage, I've been thinking about this whole preservation/resurrection thing a lot lately, and I'm going to try to to encapsulate some of my thoughts here.

Methods or concepts

It seems like there are several different concepts of how we'd use it, if it were possible.

For space travel

In this case a healthy person is preserved to reduce the tedium (and aging) involved in very long journeys like to Mars or Jupiter, or even a nearby star. In this case the resurrection process would have to be entirely automated, unless there was a rotating crew of doctors/technicians preserving and resurrecting each other so there'd be "hands on deck" when the destination was reached. There could even be a rotating crew of scientific observers, ship's crew, etc. if needed.

For a future cure

One, that always made the most "sense" to me, is to preserve the entire body (using a proven method) of a person who has just died or was about to die of an incurable disease that has not ruined their brain (think, say, pancreatic cancer), with the goal of resurrecting them if a cure or solution is found. The younger they are, the better, since the investment yields more "people-years" of life. This scenario involves the fewest assumptions - once the pres./res. cycle is mastered, it would only depend on medical advance of the mundane variety in the future to be useful.

A perhaps more practical subset of this plan would be "short term" preservation, say, for example, in the case of a patient who requires an organ transplant that is not yet available. They would be preserved before or at the point of death, and resurrected when a suitable organ is available.

For a new life

Two, is doing the same thing with someone who has essentially died (or almost dies) of "old age". The extra problem here is that the resurrection brings back to life a body that is "worn out" - we all know the effects of aging. So the "medical advances" necessary to make this a useful process would involve being able to reverse the effects of aging, which I find to be very "far out". Slowing aging down, sure, I'd buy that possibility, perhaps even arresting the process of aging, for some years if not "forever". But without the ability to reverse the aging, there'd be no point to preserving, say, a 90 year old with poor eyesight and hearing, weak bones (dementia even?) and a bad heart. Of course, if the process were cheap enough and the "disease" was essentially clogged arteries (causing heart attacks or strokes), appropriate medical advances applied to the resurrected body might yield many years, perhaps decades, of life even for a quite elderly patient.

Now, to me, both the above don't seem to be too far into science fiction territory - each unsolved step would seem to be a fairly straightforward, even if difficult, medical problem to solve: how to preserve; how to resurrect/resuscitate (probably the hardest part); and coming up with a cure/solution for a currently untreatable ailment. The "old patient" part is one step further in my opinion, as mentioned above.

You are correct, rejuvenation is a key element in the cryonics program. Cryonics is based on the idea that future medicine will be able to not only cure all diseases, but cure the disease known as "aging". You say that "we all know the effects of aging", but it seems to me that you do not know very much about aging. Aging is the result of identifiable forms of damage to organs, tissues, cells and macromolecules. To reverse aging requires understanding of those forms of damage and how to either repair or replace what is damaged, which could involve molecular repair, stem cells, artificial organs, etc. For some insight into the molecular basis of aging, see Mechanisms of Aging. For some insight into means of rejuvenation, see Strategies for Engineered Negligible Senescence. Thinking that aging is "magic", beyond human or scientific comprehension is no longer defensible. And with understanding of the process comes the possibility of fixing the damage. --BenBest (talk) 18:14, 26 February 2010 (UTC)

Brain only - new body

The third general concept bandied about - and ironically apparently practiced the most - is the "preserve the head only" approach. Now I understand the point of this is that the head/brain contains all the "information" that constitutes the "person" that is to be resurrected. Trouble is, we have cut off and thrown away the life support system for that information.

This adds some tremendous complexity on top of the "medical problems to solve" listed above. Do we need to be able to somehow grow the patient a new body by cloning cells from their head? How do we stop that clone from growing a head along the way? How do we grow the cloned body to adult size? When I think about this whole "making a new body" approach, I keep crashing into huge roadblocks - generally cloning results in what amounts to an embryo, which is then "brought to life" through the normal means - gestation and birth, yielding a baby which now will take many years to become a viable "vessel" for a resurrected adult brain. Perhaps the process would be to grow organs separately rather than growing an entire body, and sewing them all together with some artificial parts (skin, bones, perhaps the heart, who knows how much), then transplanting the brain into it. Speculating like this is all a lot of fun, of course, but now we have piled on several huge layers of problems to solve.

Alternatively, if there was a way to grow a cloned body with a brain to an adult stage without its brain developing any "information" of its own (the ethics of this are beyond the pale to me - even if the body is a clone of the patient, they don't "own" it), and then (this is really getting into sci-fi territory now) somehow transferring the information in the preserved patient's brain to the brain in the cloned body (is this what they call "uploading"?), would this now be a new legal "person"? Would we then destroy the preserved brain? Could we/would we make multiple copies of the person - wouldn't it be great to have ten resurrected (and cured) Stephen Hawkings working on the problems of theoretical physics? Wouldn't it be funny if by the time we could do this, physics would be so far advanced that the newly printed Hawkings would have to go to primary school to start to catch up?

Brain only - new machine

The "furthest out" and probably least satisfactory concept is to, at some point, transfer the "information" from the popsicle to some sort of completely artificial machine. The core of this would obviously be some sort of neural network type of "computer-like" toy. Then it would need sufficient BIOS to be acceptable to the revived "personality". I'm not sure anyone would be very happy to be revived and have no mobility, either.

What is interesting about any of these "transfer of information" concepts is, as I joked about above, it could be done multiple times since obviously at some point in the process the information is in a discrete, reproducible form. The brain transplant version does not offer this hope.

Minor conclusion

After stretching the concept to these rather outrageous versions, it makes preserving a 24 year old who died of leukemia in order to revive them when we've cured leukemia seem like a fairly trivial technological problem or three.

Hand-wavey calculation of probabilities and timescales

There seem, to me, to be three general ways of developing the preserve/resurrect technology. One is cryonics, or cold storage; another is chemical preservation, like pumping a preservative through the vascular system that prevents deterioration, and the third, which ought to be viable if the more extreme "brain only" resurrection methods above were partially worked out, would be to store the "information" by a method other than preserving the head meat. I'll ignore the third one.

The dumbest thing about modern "cryonics" to me is that without a viable, established resurrection technology, the appropriate means of preservation are completely unknown. The science work to be done has nothing to do with freezing (or "vitrifying", to be more accurate, I suppose) dead people or their heads. It involves working from the most basic exploits to the more complex, one step at a time.

Single cells

Preserving and resurrecting single cells seems to be fairly well-established science/technology. It is used in treatments as mundane as fertility enhancement, and as interesting as Lenski's long term E. coli evolution experiment. In Lenski's work (and I'm sure many other similar projects) every generation of the bacteria is stored and can be revived to "restart" the project in parallel from any point.

Organs

It seems to me that the next step would to experiment with preserving entire functioning organs and then "resurrecting" them as fully functioning, healthy organs. Many mice will surely die slow painful deaths during this work, and I hope the experimenters treat them well and provide morphine for the hurty bits.

Entire creatures

Once a means for preserving and resurrecting organs has been mastered, the logical next step is to try it on small animals. At this stage, I don't think it matters where we start - although perhaps work on warm-blooded vertebrates would be the most important.

The hard part in getting to this stage from the previous one is that an organ, say, a liver, is installed in a living animal after it is "resurrected", and the animal's body acts as a life support system for the organ, "jump starting" it in all likelihood. When an entire animal has been preserved, the resurrection process really start to take on the meaning of he word and presents an enormous challenge. Any weirdness from the preservation process, such as chemicals used to assist in the process, must be cleaned out or neutralized, in a way that causes not further damage. (Imagine a "frozen" animal with its veins full of toxic anti-freeze - you can't replace the AF with blood while it's frozen, as it would freeze the blood and ruin it. Thawing the animal to replace the AF might at some point present a crisis of timing - once it is warm enough to pump in the blood, it might be warm enough to start deteriorating.) Once the animal has had all preserving techniques reversed, it's going to need some sort of kick in the pants to get it running again. This might be as simple as using something like a defibrillator to get the heart beating - however, when a defib is used, the brain of the patient is already "active".

Long term testing

Once we have successfully preserved and resurrected some furry little critters, the next thing to test, or prove to ourselves, is whether we can select the preservation interval with impunity. We must prove that our technique does not just slow deterioration, allowing resurrection after, say, a few days or weeks, but that it truly stops deterioration. To do this long term experiments will be required, preserving them for several years at the very least followed by successful resurrections.

Since the whole point of this technique (except for short-term lifesaving, such as in the case of someone waiting for an organ donation) is to preserve a person until whatever killed them can be cured, the timescales involved could easily reach decades, if not centuries. I would consider it fair to extrapolate from small, short-lived animals "surviving" a few years to larger, longer-lived animals such as hoomins being able to "survive" much longer.

I forgot to make up any numbers

Sorry for the lie in the top level header.

Ethics of botched work

Another thing that has been making me concerned is the issue of botched resurrections, due to faulty preservation, storage, or resurrection procedures. Imagine being brought back to consciousness only to discover your left leg rotted off and your IQ dropped by 30 points (insert Ace McWicked bender joke here). At what point and how would the resurrection team make decisions on what to do with patients who are obviously damaged? Would they attempt to re-preserve in hopes of future technology that could undo the damage? Would they euthanize the patient?

Do people who currently enter into cryonic contracts sign clear waivers indicating their comfort level with less than 100% success at resurrection?

Lame copyright notice

I know the site is CC by SA, but I'd really like to retain the copyright on this essay. I should have put it on my website and just linked to it... Huw Powell / ħumanUser talk:Human 22:05, 23 February 2010 (UTC)